Toward efficient Bayesian solution of inverse problems

Youssef Marzouk Sandia National Laboratories Livermore, CA 94551 USA

jointly with Habib Najm (SNL), Larry Rahn (SNL)

support from: SNL LDRD, DOE Basic Energy Sciences

Recognizing inverse problems...

 How to relate (indirect) observations to physical parameters and models?

simple example =
linear regression
(solve with least squares)

Inverse problem examples

geophysics (seismic profiling, prospecting)

building models of gene regulatory networks

medical imaging & tomography

+ source inversion (security, environment)

Inverse problems

Given a set of data d, estimate m (or, estimate m and G_{θ})

... Formalize the process of inference. "Finding unknown causes based on their effects [Alifanov]"

Inverse problems

- Why are they difficult?
 - G⁻¹ often non-local, non-causal.
- ⇒ Classically ill-posed:
 - 1 No solution may match the data (existence)
 - linear case, $G ∈ R^{m \times n}$: ∃ a non-trivial data nullspace $N(G^T)$
 - 2 Many solutions may match the data (uniqueness)
 - linear case: ∃ a non-trivial *model nullspace N(G)*; more likely when data is **sparse** or **degenerate** relative to *dim(m)*
 - 3 Ill-conditioning or *instability:* Small changes in data *d* can lead to large changes in *m*
 - linear case: singular values $\sigma_i(G)$ decay rapidly towards zero
 - ⇒ result: sensitivity to noise

Noise and ill-conditioning

 Example: de-convolve ground acceleration from seismometer output [from ABT04]

Deterministic approaches

- Usual approach: regularization + optimization
- Regularization: impose smoothness, positivity, maximum entropy, etc...
- Example: Tikhonov-type regularization

minimize
$$J = ||G(\mathbf{m}) - \mathbf{d}||_2^2 + \alpha ||\mathbf{Lm}||_2^2$$

e.g., a roughening matrix L

- Drawbacks:
 - How to choose **L**, α , etc? Regularization can be somewhat arbitrary.
 - Regularization introduces bias, destroys consistency.
 - No meaningful uncertainty/confidence intervals on the resulting m.

Outline

- 1 Inverse problems
- 2 Bayesian solution of inverse problems
 - Formulation; Bayesian inference
 - Results: source inversion under transient diffusion
- 3 New computational tools for Bayesian inversion
 - Spectral representations of stochastic processes
 - Polynomial chaos in Bayesian inference
 - Results: accelerated MC and MCMC simulation
- 4 Extensions

Bayesian inference for IPs

Let the model m be a random variable

- Compared to classical approaches:
 - Not just a single value for m, but a probability density
 ∴ posterior = a COMPLETE description of uncertainty
 - Additional information incorporated through the prior (expert judgment, additional experiments, physical constraints, etc...)
 - No regularization parameter per se

Likelihoods, priors, & hyperparameters

Common shorthand for Bayes theorem:

$$\pi_{m|d}(m) \propto p(d|m)p_m(m)$$

- Likelihood function: L(m) = p(d|m) (how well does the model support the data?)
 - Example: deterministic forward problem G(m); uncorrelated additive measurement + model errors $\eta_i \sim p_n(\xi)$

$$d_i = (G(m))_i + \eta_i \quad \Rightarrow \quad L(m) = \prod_i p_{\eta} ((G(m))_i - d_i)$$

- Common choice: $p_{\eta} = N(0, \sigma^2)$
- Alternate interpretation:

$$(d_{true} + \eta) \sim p_d(d) \rightarrow L(m) = p_d(G(m))$$

Likelihoods, priors, & hyperparameters

- Prior p_m(m) comes from physical constraints, additional knowledge; can be uninformative.
- Hyperparameters ϕ : what if we don't know some aspects of the noise/priors:

- ex:
$$p_{\eta} = N(0, \sigma^2)$$
, σ^2 unknown
$$p(m, \phi|d) \propto p(d|m, \phi)p(m|\phi)p(\phi)$$

- The posterior density $\pi(m) = p(m|d)$ IS the full Bayesian solution to the inverse problem!
- Computational challenge: how to extract information from the unnormalized posterior density?

$$E[f] = \int f(m)p(m|d)dm$$

What if the forward model is expensive?

Source inversion— a model problem

N sources, each described by parameters $m = \{\chi_i, s_i, \sigma_i, \tau_i\}_{i=1...N}$

Data from M sensors on a regular grid; $d = \{T_{t1}, T_{t2}, ...\}_{i=1...M}$

$$\Omega = [0,1] \times [0,1]$$

$$\frac{\partial T}{\partial t} = \nabla_{\vec{x}}^2 T + \sum_{i=1}^{N} \frac{s_i}{2\pi\sigma_i^2} \exp\left(-\frac{\left|\vec{\chi}_i - \vec{x}\right|^2}{2\sigma_i^2}\right) \left[1 - H(t - \tau_i)\right]$$

$$\nabla T \cdot \hat{n} = 0$$
 on $\partial \Omega$, $T(\vec{x}, 0) = 0$

 \rightarrow forward problem G(m)=d

Source inversion

- To demonstrate, make some simplifications:
 - Consider only one source
 - Fix the source strength s_i , Gaussian width σ_i , and shutoff time τ_i
 - Goal: infer the source location $\chi = (x,y)$ from a small set of noisy measurements
 - :. This yields a 2-D posterior we can *visualize*...
- Measurement **noise/error**: $\eta_i \sim N(0,0.2)$
- **Priors**: $(x,y) = (m_0,m_1) \sim U(0,1)$

Forward simulation

Source at (x,y) = (0.25, 0.75); active for $t \in [0,0.2]$

Forward simulation

Source at (x,y) = (0.25, 0.75); active for $t \in [0,0.2]$

Forward simulation

• 3×3 grid of sensors; measure at $t = \{0.1, 0.2, 0.3\}$

 Remove data, use more distant measurement times make the problem more ill-conditioned.

⇒ broadens the posterior

Ill-conditioning ⇒ greater sensitivity to data (noise) realization

ALL: measure at $t = \{0.35\}$; $\eta \sim N(0, 0.2)$

 Add more sensors → more precise knowledge; reduce ill-conditioning

Non-unique solutions:

What if we had only a 1-D array of sensors? Place 3 sensors along

the y=0.5 line:

 $\sigma\!\!=\!\!0.2;$ d = η + G(m $_0$); 1–D distribution of sensors at t=0.2

measure at $t = \{0.2\}$; $\eta \sim N(0, 0.2)$, sensors at (x,y) = (0,0.5), (0.5,0.5), (1.0,0.5)

Outline

- 1 Inverse problems
- 2 Bayesian solution of inverse problems
 - Formulation; Bayesian inference
 - Results: source inversion under transient diffusion
- 3 Computational tools for Bayesian inversion
 - Spectral representations of stochastic processes
 - Polynomial chaos in Bayesian inference
 - Results: accelerated MC and MCMC simulation
- 4 Extensions

Computational tools for Bayesian inference

- Real (i.e., high-dimensional) problems—what information to extract from the posterior?
 - Posterior means, variances, higher moments:

$$E_{\pi}[f] = \frac{I[f]}{I[1]} = \frac{\int f(m)\pi(m)dm}{\int \pi(m)dm}$$

- Correlations, e.g., Cov(m_i, m_i)
- Marginal distributions $p(m_i)$
- Posterior "movie" (draw samples from the posterior)
- How to do this effectively?
 - Quadrature: $N_{evals} = O(n^d)$, prohibitive for large d.
 - Cubature ("sparse quadrature"): somewhat better scaling
 - Sampling: Monte Carlo, Markov chain Monte Carlo (MCMC)
- Challenge: posterior evaluations are expensive (forward problem)

Spectral rep'n of random variables

• Let (Ω, U, P) be a probability space, $X : \Omega \to R$ a square-integrable random variable. Then

$$X(\omega) = a_0 \Gamma_0 + \sum_{i_1=1}^{\infty} a_1 \Gamma_1(\xi_{i_1}) + \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{i_1} a_{i_1 i_2} \Gamma_2(\xi_{i_1}, \xi_{i_2}) + \cdots$$

$$= \sum_{k=0}^{\infty} \hat{a}_k \Psi_k(\xi_{i_1}, \xi_{i_2}, \dots)$$

- where $\{\xi_i(\omega)\}_{i=1}^n$ are orthonormal i.i.d. random variables
- and $\{\Psi_k(\xi)\}$ are orthogonal multivariate polynomials:

$$\langle \Psi_i, \Psi_j \rangle = \int_{\Omega} \Psi_i(\xi) \Psi_j(\xi) dP(\omega) = \delta_{ij} \langle \Psi_i^2 \rangle$$

= a **polynomial chaos** expansion (PCe)

Spectral rep'n of random variables

- Many families of polynomials + distributions (Hermite + Gaussian, Legendre + Uniform, ...)
- Truncate expansion at order p $\{\Gamma_0, ..., \Gamma_p\}$ and dimension n $\{\xi_1, ..., \xi_n\}$ $\Rightarrow \{\Psi_k(\xi)\}_{k=1}^P$ where $P+1=\frac{(n+p)!}{n!\, p!}$
- Orthogonality: Galerkin projection determines spectral coefficients

$$g_k = \frac{\left\langle G(X)\Psi_k \right\rangle}{\left\langle \Psi_k^2 \right\rangle}$$

- Pseudo-spectral construction & other approaches for nonpolynomial funcs; implemented in a library for "stochastic arithmetic."
- Primarily used in uncertainty quantification: structural, thermofluid, chemical systems [Ghanem, LeMaitre, Najm, Karniadakis]

PCe in Bayesian inference

Write a PCe for m ~ prior:

 \rightarrow d_{jk} : spectral representation of the output of the forward model (compute **once!**)

PCe in Bayesian inference

- Draw samples $\xi^{(j)}$ from the distribution of ξ :
 - m(ξ) is thus sampled from its prior
 - Integrate over the posterior without repeated forward solutions:

$$I[f] = \int f(m)L(m)p_m(m)dm$$

$$\approx \frac{1}{N} \sum_{j=1}^{N} \left[f\left(m(\xi^{(j)})\right) \prod_{i} p_{\eta}\left(d_i - d_{i,PC}(\xi^{(j)})\right) \right]$$

More generally, this corresponds to a change of variables
 m = g(ξ):

$$\int_{M} f(m)L(m)p_{m}(m)dm = \int_{\tilde{\Xi}} f(g(\xi))L(g(\xi))p_{m}(g(\xi)) |\det(Dg)| d\xi$$

where g is a diffeomorphism mapping $\tilde{\Xi} \subseteq \Xi$ to the range of m

PCe in Bayesian inference

 Computational efficiency—partition the range of m into non-overlapping sets Mⁱ:

$$p_m^i(m) = \begin{cases} p_m(m) & m \in M^i \\ 0 & m \notin M^i \end{cases}$$

Put $m=g^i(\xi)$ on each subdomain.

Partitioning can be *adaptive* [LeMaître 2004; extends to wavelets...].

Source inversion

source described by parameters $m = \{\chi_i\}$, active for $t \in [0,0.2]$

Data from M sensors on a regular grid; $d = \{T_{t1}, T_{t2}, ...\}_{i=1...M}$

$$\Omega = [0,1] \times [0,1]$$

$$\frac{\partial T}{\partial t} = \nabla_{\vec{x}}^2 T + \sum_{i=1}^{N} \frac{s_i}{2\pi\sigma_i^2} \exp\left(-\frac{\left|\vec{\chi}_i - \vec{x}\right|^2}{2\sigma_i^2}\right) \left[1 - H(t - \tau_i)\right]$$

 $\nabla T \cdot \hat{n} = 0 \ on \ \partial \Omega, \quad T(\vec{x},0) = 0$ \rightarrow Measurement **noise/error**: $\eta_i \sim N(0,0.2)$ **Priors**: $(x,y) = (m_0,m_1) \sim U(0,1)$

⇒ Partition the support of the prior into 4 quadrants; solve the stochastic spectral forward problem on each domain.

Pdfs at measurement points

- Predicted value of the scalar field at (x,y) = (0,0); t = 0.05
- Convergence with respect to order p

Prior uniform on lower left quadrant of physical domain

Pdfs at measurement points

- Predicted value of the scalar field at (x,y) = (0,0); t = 0.15
- Convergence with respect to order p

Compare times: sensitivity information contained in the PCe...

Surface response and error

• Predicted value of the scalar field at (x,y) = (0.0,0.5); t = 0.15:

response $d_3(\xi)$ via PC (p=6)

error: $d_3(\xi)$ - $G_3(m(\xi))$

Surface response and error

• Predicted value of the scalar field at (x,y) = (0.0,0.5); t = 0.15:

response $d_3(\xi)$ via PC (p=9)

error: $d_3(\xi)$ - $G_3(m(\xi))$

• 3×3 grid of sensors; measure at $t = \{0.05, 0.15\}$; **d** from noisy observations of a source at (x,y) = (0.25,0.75).

p=3 (dashed) vs direct (solid)

• 3×3 grid of sensors; measure at $t = \{0.05, 0.15\}$; **d** from noisy observations of a source at (x,y) = (0.25,0.75).

p=6 (dashed) vs direct (solid)

• 3×3 grid of sensors; measure at $t = \{0.05, 0.15\}$; **d** from noisy observations of a source at (x,y) = (0.25,0.75).

p=9 (dashed) vs direct (solid)

Monte Carlo speedup

Posterior mean: total computational time vs number of samples

Per-sample cost reduced by 2–3 orders of magnitude!!

Monte Carlo speedup

TOTAL computational time vs relative standard error

$$Var[I_n] \rightarrow \frac{\sigma^2}{n}$$
 where
$$\sigma^2 = Var_{p_m}[f(m)L(m)]$$

- Construct a **Markov chain** of samples $m^{(t)}$ such that, after some burn-in period b, samples are being drawn from the posterior distribution $\pi(m)$
 - Markov chain defined by transition kernel $K\!\left(m^{(t+1)}\middle|m^{(t)}\right)$
 - π is the **stationary distribution:** $\int \pi(m)K(m^{(t+1)}|m)dm = \pi(m)$
- How? [Metropolis 1953, Hastings 1970, Tierney 1995]
 - Proposal distribution $q(y|m_t)$
 - Acceptance probability $0 < \alpha \le 1$:

$$\alpha(m_t, y) = \min\left(1, \frac{\pi(y)q(m_t|y)}{\pi(m_t)q(y|m_t)}\right)$$

- Acceptance $\Rightarrow m^{(t+1)} = y$; otherwise $m^{(t+1)} = m^{(t)}$
- Ergodic average:

$$E[f] \approx \bar{f}_n = \frac{1}{n-b} \sum_{t=b+1}^{n} f(m_t)$$

Why use MCMC?

- Directly "simulate" the posterior— more efficient sampling
- No normalization
- Automatic marginalization
- Under certain conditions (irreducibility, recurrence)

- SLLN:
$$\bar{f}_n \xrightarrow{a.s.} E_{\pi}[f]$$

- CLT:
$$\sqrt{n} \left(\bar{f}_n - E_\pi [f] \right) \xrightarrow{i.d.} N(0, \varsigma^2)$$

$$\varsigma^2 = \sigma^2 + 2 \sum_{s=1}^{\infty} \gamma(s) \text{ where } \gamma(s) = E_\pi [(m^{(t)} - \langle m \rangle)(m^{(t+s)} - \langle m \rangle)]$$

 For difficult distributions, diagnosing/verifying convergence still requires practical experience...

Apply random-walk Metropolis to the PC-transformed problem:

$$E_{\pi}[f] = \int_{\tilde{\Xi}} f(g(\xi)) \frac{L(g(\xi))p_{m}(g(\xi))|\det(Dg)|}{k} d\xi$$

$$\tilde{f}(\xi) \qquad \tilde{\pi}(\xi)$$

chain position in the ξ plane

 ξ_0 -coordinate of chain position versus time

Mixing, good and bad:

 ξ_0 —coordinate of the chain, RWM with σ =2.0

autocovariance for different samplers

• Marginal distributions via kernel density estimation:

Extending the Bayesian framework

 Inversion from forward models with additional parametric uncertainty (m_P):

- Propagate both $p(m_l)$ and $p(m_P)$ with PCe
- Uncertain forward models—another approach:

$$F(\mathbf{d}|m_I) \rightarrow L(m) = \int p_d(\mathbf{d}) F(\mathbf{d}|m_I) d\mathbf{d}$$

– The exact forward model is now a special case:

$$F(d|m_I) = \delta(d - G(m))$$

Conclusions

- Bayesian inference for inverse problems
 - A complete approach to noisy data, incomplete data, ill-conditioning, and stochastic forward problems.
 - A quantitative description of uncertainty in the inverse result.
- Accelerating Bayesian inverse problem solutions with PCe:
 - Spectral representation of random variables; Galerkin projection.
 - Propagate prior uncertainty through forward model; rapid sampling by evaluating PCe
 - Choice of basis, order, decomposition of the prior support.
 - Sampling strategies (MC, MCMC)
- Demonstrate w/source inversion in transient diffusion

Ongoing work

- Larger problems, more complex source inversion:
 - Multiple sources, additional uncertain source parameters
 - PCe approaches for inverse problems on continuous fields
 - Add convective transport!
- Inverse problems in disease propagation (with J. Ray, K. Devine, P. Fast)
- Structural inference: building models of biological kinetic networks (e.g., gene regulatory networks from microarray data)